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Abstract

As far as the writer is aware, the Bianchi identities associated with a Weyl space have never been presented.
That space was discovered by the noted German mathematical physicist Hermann Weyl in 1918, and rep-
resented the geometry underlying a tantalizing theory that appeared to successfully unify the gravitational
and electromagnetic fields. One of theory’s problems involved one form of the Bianchi identities, which
in Riemannian space are used to derive the divergenceless Einstein tensor Gµν. Such a derivation is gen-
erally not applicable in a non-Riemannian geometry like Weyl’s, in which the covariant derivative of the
metric tensor is non-zero. But it turns out that such a derivation is not only possible but quite straightfor-
ward, with a result that hints at a fundamental relationship between Weyl’s geometry and electromagnetism.

1. Preliminaries

In 1918 the German mathematical physicist Hermann Weyl proposed a unification of gravitation and
electromagnetism based on the invariance of physics with respect to a conformal (or scale) transformation of the
metric tensor gµν→ exp(π)gµν, where π(x) is an arbitrary scalar function. That invariance led Weyl to a
formalism involving a non-vanishing covariant derivative of the metric tensor (called the non-metricity tensor),
which he determined to be

gµν||α = 2gµνφα (1.1)

where
gµν||α = gµν|α − gµλΓ

λ
να − gλνΓ

λ
µα

Here the double-bar and single-bar subscripts represent covariant differentiation and ordinary partial
differentiation, respectively, and the Γ λµν quantities are the Weyl connection coefficients (not to be confused with
the Christoffel symbols). This formalism represents a geometry that is today known as a Weyl space. The quantity
φα represents a new field which Weyl subsequently identified as the electromagnetic 4-potential.

Using Weyl’s definition for gµν||α in (1.1) is it an easy matter to show that

gµν||α = −2gµνφα,
�p

−g
�

||α = 4
p

−gφα (1.2)

where
p
−g is the determinant of the metric tensor in four dimensions. We thus have the identity

�p

−g gµνgαβ
�

||λ = 0 (1.3)

which will be of use later on.

It is important to note that the traditional Bianchi identities of ordinary Riemannian geometry, given by

Rλµνα + Rλαµν + Rλναµ = 0, (1.4)

Rµναβ + Rµβνα + Rµαβν = 0, (1.5)

Rλµνα||β + Rλµβν||α + Rλµαβ ||ν = 0 (1.6)

are also valid in a Weyl space, where Rλµνα is the Riemann-Christoffel curvature tensor given by

Rλµνα = Γ
λ
µν|α − Γ

λ
µα|ν + Γ

λ
αβΓ

β
µν − Γ

λ
βνΓ

β
µα (1.7)

In Weyl space this tensor is a complicated mixture of the Christoffel symbols, the metric tensor and the Weyl field
φµ. Fortunately, we will not be needing it.
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2. Derivation of the Einstein Tensor from the Bianchi Identities

A common exercise for students is to use the set of Bianchi identities in (1.6) to show that the covariant
divergence of the Einstein tensor Gαβ = Rαβ − 1/2gαβR vanishes. In Riemannian geometry gµν||α is zero, allowing
us to pull the metric tensor inside the covariant differentiation process for index raising and lowering purposes.
We also have the indispensible identity

Rµναβ = −Rνµαβ (2.1)

Using this identity, setting β = λ in (1.5) and multiplying by gµν, it is a simple matter to show that
�

Rαβ −
1
2

gαβR
�

||β
= 0 (2.2)

from which the traditional Einstein field equations for free space

Rαβ −
1
2

gαβR= 0 (2.3)

are obtained.

3. Consequences of Non-Metricity

The Riemann-Christoffel tensor is most conveniently derived via the identity

ξµ||α||β − ξµ||β ||α = −ξλRλµαβ

where ξλ is an arbitrary rank 1 tensor. This can be extended to tensors of higher rank; for the metric tensor itself,
this can be written as

gµν||α||β − gµν||β ||α = −gµλRλναβ − gλνR
λ
ναβ (3.1)

or
gµν||α||β − gµν||β ||α = −Rµναβ − Rνµαβ (3.2)

Thus, in a space in which the non-metricity tensor does not vanish the identity in (2.1) is no longer valid, and a
straightforward derivation of (2.2) cannot be performed. It’s also complicated by the fact that the metric tensor
cannot be pulled into the covariant differentiation process without having to deal with terms like gµν||α.

4. The Bianchi Identities in Weyl Space

Fortunately, Weyl’s definitions for the non-metricity tensor and its determinant are simple enough that we can
replicate most of the steps used in the derivation of (2.2) without difficulty. To begin we note that, for a Weyl
space, (3.2) reduces to

Rµναβ = −Rνµαβ − 2gµνFαβ (4.1)

where we define Fαβ = φα||β −φβ ||α. We now use (1.6) with the contraction β = λ, which we write as

�

gλκRκµνα
�

||λ + Rµν||α − Rµα||ν = 0 (4.2)

where we have used the identity Rµν = Rλ
µλν
= −Rλ

µνλ
by virtue of the contraction properties of the curvature

tensor. We now multiply (4.2) by the quantity
p
−g gµνgαβ and use Weyl’s definitions in (1.1) and (1.2) to pull

these quantities into (4.2). Equation (4.1) now allows us to raise the indices of Rµκνα, which will result in various
terms involving the Ricci tensor Rαβ and the Ricci scalar R= gαβRαβ . The rest is basically just a lot of algebra,
which is simplified considerably using (1.3). After some straightforward simplification, index relabeling and
reduction of the remaining terms, it is easy to show that

�

p

−g
�

Rαβ −
1
2

gαβR
��

||α
=
�p

−gFβα
�

||α (4.3)

2



Note now that the term on the right-hand side is identical to the source density of the electromagnetic field, orp
−gSβ =

�p
−gFβα

�

||α, leaving us with the tensor density divergence expression

�

p

−g
�

Rαβ −
1
2

gαβR
��

||α
=
p

−gSβ (4.4)

which reduces to (2.2) in the absence of the Weyl field φα.

(The reader will note that the simplicity of this expression is the result of bringing the metric determinant into the
analysis.) This is a most interesting result, considering its simplicity and the apparent connection of Weyl’s
formalism to electrodynamics, but what does it mean? Ordinarily, one associates the Einstein tensor with the
mass-energy tensor Tαβ which, for the electromagnetic field, is given by

Tαβ = FαλFβ
λ
−

1
4

gαβ FµνFµν

The covariant divergence of both the Einstein and mass-energy tensors is assumed to vanish, which conventionally
is interpreted as a conservation law for these quantities. Here the notion of conservation seems to be turned on its
head. True, the covariant divergence of the source vector density vanishes (implying conservation of electric
charge), but how can the same be true of the left-hand side of (4.4)?

5. Discussion

Although Einstein showed Weyl’s 1918 theory to be non-physical, the theory frequently appears in the literature
today, usually in the context of dark matter and dark energy theories, while any connection it may have to
electromagnetism is generally ignored. Nevertheless, it is fascinating that the theory continues to intimate a
fundamental relationship between geometry and the electromagnetic field. Indeed, in Weyl’s original theory he
was able to derive a connection between the Ricci scalar and the electromagnetic source vector from a conformally
invariant action principle, which resulted in the identification

Sβ = kgαβ
�

Rφα +
1
2

R|α

�

with k a constant.

As is well known, a consistent interpretation of gravitational energy conservation via the vanishing divergence of
the Einstein tensor is problematic. This is due at least in part to the fact that a gravitational field contains energy,
which in turn generates an additional gravitational field that can act on itself, a conclusion that is apparent from
the highly nonlinear nature of the Einstein field equations themselves. It should therefore come as no surprise that
theories of gravitational radiation, which should at least superficially resemble Maxwell’s equations, have
historically relied on weak-field approximations of the field equations. Exactly how electrodynamics influences
gravity (and vice versa) will likely not be known until a consistent and workable quantum gravity theory presents
itself.

Strangely, it appears that Weyl himself never explored the derivation of the Einstein tensor from the Bianchi
identities using his theory. If he had done so, perhaps he would have been much amused.
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