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Abstract

Of all the known mathematical symmetries in modern physics, conformal invariance is probably the least one
encountered by students. In quantum field theory it is better known as gauge invariance or phase invariance,
where it is perhaps the most fundamental symmetry underlying all modern quantum physics. But in general
relativity it is a backwater symmetry, due primarily to our ignorance as to whether or not it is even needed in
gravitational work. It is usually just ignored, as Einstein’s 1915 gravity theory works just fine, even though it is
not conformally invariant.

In this paper we explore how conformal invariance can be brought into relativistic gravitational physics. At
the most fundamental level, this effort requires the introduction of the Weyl tensor. The motivation for this
is solely due to the possibility that the problem of dark matter, believed to be the explanation for the anoma-
lous behavior of galactics stars, lensing and clustering, might be explained instead by modifying Einsteinian
gravity to include conformal invariance. In this regard, the Weyl tensor (or its various forms) is indispensible.

1. Introduction

It is assumed that the reader is already familiar with dark matter and its assumed responsibility for flat stellar
rotation curves, galactic lensing and clustering. But despite nearly half a century of dedicated and costly
experimental research, not a single dark matter particle has been verifiably detected. Although the search for dark
matter continues with larger and more elaborate experimental equipment, some researchers have given up hope
that it will ever be detected, with not a few believing that dark matter simply does not exist. This situation has
motivated the possibility that Einsteinian gravity might be modified to provide an alternate and perhaps more
correct explanation for dark matter’s effects.

In 1918, the noted German mathematical physicist Hermann Weyl sought to generalize Einstein’s 1915 theory in
the hope that a suitable modification of that theory might also incorporate electromagnetism as a purely
geometrical construct. Weyl found a way to introduce the electromagnetic four-potential Aµ into the Levi-Civita
(or Christoffel) connection term
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�

(where the single subscripted bar stands for ordinary partial differentiation). He then wrote that the revised
connection should now read
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Weyl’s connection term was invariant with respect to the local transformation

gµν(x)→ eπ(x)gµν(x)

where gµν is the metric tensor and π is an arbitrary function of space and time, while the potential Aµ transforms
accordingly. Such a transformation is now known as a Weyl transformation, and quantities invariant to this
transformation are called conformally invariant. All of this is explained in great detail in Reference 3.

Despite initial admiration by the physics community, Einstein spotted a fatal flaw in Weyl’s theory, and Weyl
subsequently abandoned it. However, he was still convinced that gravitation should be a conformally invariant
theory, and he sought a geometrical quantity that displayed that invariance that involved only the Riemann
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curvature tensor Rµναβ , the Ricci tensor Rµν and the Ricci scalar R. Weyl was able to derive a unique 4-rank tensor
with the required property, now known as the Weyl tensor which, in n dimensions, is

Cλναβ = Rλναβ +
1

n− 2

�

δλβRνα −δλαRνβ + gναRλβ − gνβRλα
�

+
1

(n− 1) (n− 2)

�

δλα gβν −δλβ gαν
�

The derivation is straightforward but cumbersome, and can be found in Reference 4. (The writer can’t help noting
that the calculation is greatly simplified by adopting a locally flat coordinate system, where the metric tensor is
considered a constant.) Note that any contraction of components in the Weyl tensor vanishes due to the nature of
the terms in the tensor itself. Consequently, quantities like Cλ

νλβ
= 0 .

2. The Weyl Action

Unfortunately, the Weyl tensor cannot be used as an action Lagrangian because it is not a Lorentz scalar. To
construct such a scalar, Weyl was forced to consider the tensor’s square, CµναβCµναβ . This quantity provides a
suitable invariant, and the associated action

∫

p

−g Cµναβ Cµναβ d4 x (2.1)

is fully conformally invariant (note that this action is valid only for the case n= 4). By the laborious process of
multiplying Cµναβ by its fully contravariant form Cµναβ , the integral reduces to

∫

p

−g Cµναβ Cµναβ d4 x =

∫

p

−g
�

Rµναβ Rµναβ − 2 Rµν Rµν +
1
3

R2
�

d4 x (2.2)

At this point it is instructive to note that the labor involved in calculating (2.2) can be avoided by considering the
conformal variations of the individual quantities Rµναβ , the Ricci tensor Rµν and the Ricci scalar R (this is also
shown in Reference 3). By writing

∫

p

−g Cµναβ Cµναβ d4 x =

∫

p

−g
�

Rµναβ Rµναβ + ARµν Rµν + B R2
�

d4 x (2.3)

(where A and B are constants) and taking the conformal variation of each term in the integrand, it is
straightforward to see that this reduces to (2.2) provided that the simple condition

A= −3B − 1 (2.4)

holds. It is a simple matter to show that for A= −2 we have B = 1/3, and we recover (2.2). This is sometimes
known as the Gauss-Bonnet case.

However, any hope we have of deriving the equations of motion from (2.2) is greatly complicated by the presence
of the Riemann curvature term. But in 1938 Cornelius Lanczos (Reference 1) demonstrated that there is a
divergence term buried in the equation that allows for the elimination of the curvature term while retaining the
conformal invariance of the action.

While he did not elaborate on this idea, there is an extremely simple way of accomplishing this. Let us assume any
other value for the constant A; for example, let us assume A= 23.178. Then from (2.4) we have B = −8.059333....
Then the action becomes

∫

p

−g
�

Rµναβ Rµναβ + 23.178 RµνR
µν − 8.059333... R2

�

d4 x

Remarkably, this action is conformally invariant! But let us now subtract the integrand in (2.2) from this. The
Riemann curvature terms cancel, and we’re left with

∫

p

−g
�

(23.178+ 2)Rµν Rµν + (−8.059333...− 1/3)R2
�

d4 x
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or

25.178

∫

p

−g
�

Rµν Rµν −
1
3

R2
�

d4 x

Ignoring the irrelevant leading constant, we have

S =

∫

p

−g
�

Rµν Rµν −
1
3

R2
�

d4 x (2.5)

This quantity is recognized as the ‘‘official’’ action for conformal gravity. The reason that (2.4) works is not
because there is a divergence buried in the action, but because the all-important Bianchi identity

�

Rµν −
1
2

gµν R
�

||ν
= 0

is hiding in the action, where the double subscripted bar stands for covariant differentiation.

3. Problems

An annoying problem with (2.5) is that it is of fourth order with regard to the metric tensor and its derivatives.
This introduces ghost terms into the theory, particularly when attempts are made to join it with quantum field
theory, despite the fact that the Weyl action (being dimensionless) is renormalizable.

Another problem, and one that seems to be ignored in the research, is that being a square (the bare integrand has
the dimension L−4) and of fourth order greatly complicates the task of finding a suitable energy-momentum
tensor to match it with. All traditional forms of the energy-momentum tensor are of dimension L−2, and it seems
meaningless to try matching the Weyl action with the square of this tensor.

Furthermore, although the Weyl action omits the Riemann curvature tensor, variation of the action with respect to
the metric tensor gµν is still very difficult. Mannheim and Kazanas managed to find an exact vacuum solution
using a Schwarzschild-like metric, where ds2 = eνc2d t2 − eλdr2 − r2dΩ2 and with

eν = e−λ = 1−
(2− 3βγ)

r
− 3βγ+ γr + kr2 (3.1)

where β ,γ, k being constants. This solution has direct application to the dark matter problem (especially in view
of the last two terms), but the the authors’ subsequent inclusion of a second-order energy-momentum tensor
seems contrived.

Finally, despite its formal elegance and apparent applicability it is still not known if conformal invariance plays an
important role in gravitation.

Nevertheless, fourth-order modified gravity theories like Weyl’s have experienced a resurgence of interest in
recent years, particularly because all efforts to date to detect dark matter particles have failed.
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